This research venture seeks to make a significant contribution to road safety efforts by providing an efficient solution for the identification and prevention of drowsy driving occurrences, thereby lowering associated risks and improving the well-being of drivers and other road users. A thorough understanding of drowsy driving is provided by the combination of sensor data, interviews, and questionnaires, which serves as a foundation for the development of the anti-sleep system.
The working of this project is based on an Infra-Red Sensor, this sensor is the heart of this project.
The picture of Circuit diagram shows a typical IR Sensor, basically it has a transmitter IR LED, A photo Diode, an Op-amplifier IC and a potentiometer. The photo diode is placed just next to the IR LED in such a way that it cannot receive IR rays directly. Photodiode is sensitive to the IR radiation. Its cathode connected to the positive voltage i.e. 5volt and anode connected to the noninverting input of the Op-amplifier which also get pulled down though the 4.7Kilo ohm resistor. Potentiometer in IR sensor is use to set the sensitivity distance of the sensor, it connected to the inverting input of the Op-amplifier. IR LED continuously transmit the infra-red rays and if any object comes in front of it, IR rays get reflected back and it received by the photo diode due to this change in IR radiation the voltage at the anode get change, the change in anode voltage is depend on the IR radiation received by the photo diode. More the IR radiation received grater will be the change in anode voltage. The output of the IR Sensor taken from the output of the Op-amplifier.
We can adjust the sensitivity distance by rotating the potentiometer on the sensor, we rotate the potentiometer that means we set a threshold voltage for the noninverting input of the Op-amplifier. Whenever the voltage on the noninverting input is greater than the threshold voltage, the voltage on the noninverting input i.e. +ve voltage from the photodiode get forwarded and get the positive pulse at the output of the Op-amplifier i.e. output of the sensor.
IR sensor is connected to the Seed studio XIAO ESP32C3 Pro Mini board as Vcc of the sensor to the vcc of the Seed studio XIAO ESP32C3 Pro Mini, Ground to the ground and the output of the sensor to the Analog pin one D3 of the Seed studio XIAO ESP32C3 Pro Mini. I used a 5volt buzzer and a vibrator motor for alerting. I connected both buzzer and vibrator motor in parallel and used a general purpose NPN Transistor (BC547) to drive them. Transistor's emitter connected to the ground and collector connected to the negative pin of the buzzer and vibrator motor. Positive terminal of vibrator motor and buzzer are further connected to the vcc of the Seed studio XIAO ESP32C3 Pro Mini. Base of the transistor connected to the pin D9 of the Seed studio XIAO ESP32C3 Pro Mini through the 4.7 kilo ohm resistor.
This report is a product of project entitled "Automatic photovoltaic solar panel cleaning system" The aim of this project is to design an innovative cleaning solution for photovoltaic solar panels in solar power plants. The accumulation of dust and debris on solar cells significantly reduces the eff...
Read more>>Traditional gate opening methods involve manual operation, often requiring users to exit their vehicles, which can be inconvenient and time-consuming. These methods are also vulnerable to security threats and lack automation capabilities. The "Smart Gate Automatic Operated based on IoT" project add...
Read more>>This research, present the operation, construction, design and fabrication of the OFF-ROAD WHEELCHAIR OF DISABLED TOURIST. In general, for access to public buildings, it is frequently necessary to adapt older buildings with features such as ramps, elevators in order to allow access by wheelchair use...
Read more>>The project aims to design and prototype a two-way communication smart meter for smart grid applications using Arduino Uno, voltage sensor, relay, power supply, regulator, PCB, buzzer, and GSM module. The proposed system will monitor the voltage level of the power line and provide real-time informat...
Read more>>This project presents the design, implementation and characterization of a hardware platform for Fuel Management System (FMS) for fuel carrying vehicles. The primary design goal is to devise a system capable of monitoring the fuel level in real time. This system is proposed for fuel carrying road ta...
Read more>>Total: RWF 0.00